Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.035$
$w R\left(F^{2}\right)=0.095$
$S=1.05$
3237 reflections
338 parameters
H atoms: see below
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0512 P)^{2}\right.$
$+0.1868 \mathrm{P}]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.43 \mathrm{e}_{\text {弲 }}{ }^{-3}$
$\Delta \rho_{\text {min }}=-0.23 \mathrm{e}^{-3}$
Extinction correction: none
Scattering factors from International Tables for
Crystallography (Vol. C)
Absolute structure: Flack (1983)

Flack parameter $=0.00(2)$

Table 1. Selected geometric parameters $\left(\AA,^{\circ}\right)$

$\mathrm{C} 0-\mathrm{N} 3$	$1.878(3)$	$\mathrm{O} 5-\mathrm{C} 11$	$1.217(4)$
$\mathrm{C} 0-\mathrm{N} 1$	$1.884(3)$	$\mathrm{O}-\mathrm{C} 11$	$1.334(5)$
$\mathrm{C} 0-\mathrm{N} 4$	$1.884(3)$	$\mathrm{O}-\mathrm{C} 12$	$1.441(6)$
$\mathrm{C}-\mathrm{N} 2$	$1.888(3)$	$\mathrm{C} 9-\mathrm{C} 10$	$1.525(6)$
$\mathrm{C} 0-\mathrm{C} 10$	$2.112(4)$	$\mathrm{C} 10-\mathrm{C} 11$	$1.478(6)$
$\mathrm{C} 0-\mathrm{P}$	$2.330(1)$		
$\mathrm{C} 10-\mathrm{C}-\mathrm{P}$	$176.3(1)$	$\mathrm{C} 9-\mathrm{C} 10-\mathrm{Co}$	$115.2(3)$
$\mathrm{C} 11-\mathrm{O}-\mathrm{Cl} 2$	$116.1(3)$	$\mathrm{O}-\mathrm{C} 11-\mathrm{O} 6$	$121.9(4)$
$\mathrm{C} 11-\mathrm{C} 10-\mathrm{C} 9$	$112.4(4)$	$\mathrm{O} 5-\mathrm{C} 11-\mathrm{C} 10$	$125.6(5)$
$\mathrm{C} 11-\mathrm{C} 10-\mathrm{Co}$	$108.6(3)$	$\mathrm{O} 6-\mathrm{C} 11-\mathrm{C} 10$	$112.5(3)$

H atoms were refined using a riding model, except for the H atoms of the hydroxy groups, the coordinates and displacement parameters of which were fixed.

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1992a). Cell refinement: MSC/AFC Diffractometer Control Software. Data reduction: TEXSAN (Molecular Structure Corporation, 1992b). Program(s) used to solve structure: MITHRIL (Gilmore, 1984). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: $S V$ (Nemoto \& Ohashi, 1993). Software used to prepare material for publication: SHELXL93.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: NA1314). Services for accessing these data are described at the back of the journal.

References

Arai, Y. \& Ohgo, Y. (1998). In preparation.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Gilmore, C. J. (1984). J. Appl. Cryst. 17, 42-46.
Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
Kurihara, T., Ohashi, Y., Sasada, Y. \& Ohgo, Y. (1983). Acta Cryst. B39, 243-250.
Kurihara, T., Uchida, A., Ohashi, Y. \& Sasada, Y. (1984). Acta Cryst. B40, 478-483.
Kurihara, T., Uchida, A., Ohashi, Y., Sasada, Y. \& Ohgo, Y. (1984a). J. Am. Chem. Soc. 106, 5718-5724.

Kurihara, T., Uchida, A., Ohashi, Y., Sasada, Y. \& Ohgo, Y. (1984b). Acta Cryst. C40, 1557-1559.
Kurihara, T., Uchida, A., Ohashi, Y., Sasada, Y., Ohgo, Y. \& Baba, S. (1983). Acta Cryst. B39, 431-437.

Molecular Structure Corporation (1992a). MSCIAFC Diffractometer Control Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Molecular Structure Corporation (1992b). TEXSAN. TEXRAY Structure Analysis Package. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Nemoto, T. \& Ohashi, Y. (1993). SV. Program for Crystal and Molecular Graphics. Tokyo Institute of Technology, Japan.

North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
Ohashi, Y. (1988). Acc. Chem. Res. 21, 268-274.
Ohashi, Y. \& Sasada, Y. (1977). Nature (London), 267, 142-144.
Ohashi, Y., Yanagi, K., Kurihara, T., Sasada, Y. \& Ohgo, Y. (1981). J. Am. Chem. Soc. 103, 5805-5812.

Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Tomotake, Y.. Uchida, A., Ohashi, Y., Sasada, Y., Ohgo, Y. \& Baba, S. (1984). Acta Cryst. C40, 1684-1687.

Tomotake, Y., Uchida, A., Ohashi, Y., Sasada, Y., Ohgo, Y. \& Baba, S. (1985). Isr. J. Chem. 25, 327-333.

Acta Cryst. (1998). C54, 741-743

A Polymorph of Bis(2-pyridylmethyl)amine Iron(III) Chloride

K. R. Justin Thomas, ${ }^{a}$ Marappan Velusamy ${ }^{b}$ and
Mallayan Palaniandavar ${ }^{b}$
${ }^{a}$ Regional Sophisticated Instrumentation Centre, Indian Institute of Technology, Chennai 600 036, India, and
${ }^{b}$ Department of Chemistry, Bharathidasan University, Tiruchirapalli 620 024, Tamil Nadu, India. E-mail:
thomas@chem.sinica.edu.tw

(Received 14 April 1997; accepted 12 November 1997)

Abstract

The structure of the orthorhombic modification of an iron(III) chloride complex of bis(2-pyridylmethyl)amine, a potential tridentate N -donor ligand, has been determined, i.e. [bis(2-pyridylmethyl)amine- $\kappa^{3} N$]trichloroiron(III), $\left[\mathrm{FeCl}_{3}\left(\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~N}_{3}\right)\right]$. The iron(III) has a rhombically distorted octahedral coordination environment made up of all three N atoms of the capping tridentate ligand and three Cl^{-}ions.

Comment

Iron(III) complexes incorporating pyridyl and phenolate donors have been synthesized in order to unravel the structure-function relationships of iron(III) tyrosinate proteins (Cox \& Que, 1988; Que, 1983). Recently, we reported a series of such iron(III) complexes possessing interesting spectral and structural properties (Viswanathan et al., 1996).

In the crystal of the title compound, (I), there are two crystallographically independent complex molecules in the asymmetric unit, which exhibit the same coordination geometry but slightly different bond lengths and angles.

(I)

Each complex has distorted octahedral coordination geometry. The equatorial plane is defined by two ciscoordinated pyridine N atoms and two Cl^{-}ions. The secondary amine N atom is axial to this plane and trans to the third Cl^{-}ion, resulting in folding and hence facial coordination of the bis(pyridylmethyl)amine ligand. The average $\mathrm{Fe}-\mathrm{N}$ (pyridine) bond lengths in the two molecules are almost equal [2.182(5) and 2.188 (5) Å]. The $\mathrm{Fe}-\mathrm{N}$ (secondary amine) distance is longer by $0.015 \AA$ on average when compared with the Fe N (pyridine) interactions. The $\mathrm{Fe}-\mathrm{Cl}$ bonds trans to the $\mathrm{Fe}-\mathrm{N}$ (pyridine) bonds are longer than the $\mathrm{Fe}-\mathrm{Cl}$ bonds trans to the $\mathrm{Fe}-\mathrm{N}$ (amine) bond. Also, the approximately linear N (amine)- $\mathrm{Fe}-\mathrm{Cl}$ angles are wider by about 3.5° than the N (pyridine) $-\mathrm{Fe}-\mathrm{Cl}$ angles. All four five-membered chelate rings adopt half-chair conformations and the bite angles range from 75.8 (2) to $76.5(2)^{\circ}$. The pyridine rings are planar. All other distances and angles are comparable with values found for related metal complexes obtained from pyridine- and benzimidazolyl-derived ligands (Butcher \& Addison, 1989; Adams et al., 1990), including the monoclinic modification of the present structure (Viswanathan et al., 1996).

Fig. 1. The structures of the two independent complex molecules in the asymmetric unit (40% probability displacement ellipsoids. H atoms omitted for clarity).

Experimental

The reaction of iron(III) chloride in methanol with bis(2pyridylmethyl)amine in methanol in a $1: 1$ molar ratio produced the title compound in 80% yield.

Crystal data

$\left[\mathrm{FeCl}_{3}\left(\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~N}_{3}\right)\right]$
$M_{r}=361.45$
Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$

Orthorhombic
Pna2
$a=15.575$ (5) \AA
Cell parameters from 25 reflections
$\theta=12.5-17.8^{\circ}$
$b=8.455(5) \AA$
$c=22.745$ (5) \AA
$\mu=1.530 \mathrm{~mm}^{-1}$
$T=293$ (2) K
$V=2995(2) \AA^{3}$
Prism
$Z=8$
$0.35 \times 0.25 \times 0.18 \mathrm{~mm}$ Yellow
$D_{\mathrm{s}}=1.603 \mathrm{Mg} \mathrm{m}^{-3}$
$D_{m}=1.611 \mathrm{Mg} \mathrm{m}^{-}$
D_{m} measured by flotation in
$\mathrm{CCl}_{4} / \mathrm{CH}_{2} \mathrm{Br}_{2}$
Data collection
Enraf-Nonius CAD-
diffractometer
$\omega-2 \theta$ scans
Absorption correction: none
5254 measured reflections
5254 independent reflections
4318 reflections with
$\theta_{\text {max }}=25.0^{\circ}$
$h=0 \rightarrow 18$
$k=0 \rightarrow 10$
$l=-27 \rightarrow 27$
3 standard reflections every 100 reflections
$l>2 \sigma(I)$

Refinement

Refinement on F^{2}
$(\Delta / \sigma)_{\text {max }}=-0.001$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.033$
$w R\left(F^{2}\right)=0.148$
$S=1.109$
5236 reflections
343 parameters
H atoms constrained
$\Delta \rho_{\text {nax }}=0.252 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.333$ e \AA^{-3}
Extinction correction: none
Scattering factors from International Tables for
Constallography: (Vol. C)
$u^{\prime}=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0473 P)^{2}\right.$
$+3.3599 P$]
where $P=\left(F_{o}^{2}+2 F_{i}^{2}\right) / 3$
Table 1. Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$

$\mathrm{Fe} 1-\mathrm{N} 3$	2.180 (5)	$\mathrm{Fe} 2-\mathrm{N} 6$	2.181 (4)
Fel - Nl	2.18 .3 (4)	$\mathrm{Fe} 2-\mathrm{N} 4$	2.193 (5)
$\mathrm{Fe} 1-\mathrm{N} 2$	2.194 (5)	$\mathrm{Fe} 2-\mathrm{N} 5$	2.205 (5)
$\mathrm{Fe} 1-\mathrm{Cll}$	2.276 (2)	Fe2-Cl6	2.276 (2)
$\mathrm{Fe} 1-\mathrm{Cl} 3$	2.283 (2)	$\mathrm{Fe} 2-\mathrm{Cl} 5$	2.284 (2)
$\mathrm{Fe} 1-\mathrm{Cl} 2$	2.312 (2)	$\mathrm{Fe} 2-\mathrm{Cl} 4$	2.319 (2)
$\mathrm{N} 3-\mathrm{Fe} 1-\mathrm{Nl}$	78.9 (2)	$\mathrm{N} 6-\mathrm{Fe} 2-\mathrm{N}+$	79.9 (2)
N3-Fel-N2	75.8 (2)	$\mathrm{N} 6-\mathrm{Fe} 2-\mathrm{N} 5$	76.5 (2)
$\mathrm{N} 1-\mathrm{Fel}-\mathrm{N} 2$	76.5 (2)	$\mathrm{N} 4-\mathrm{Fe} 2-\mathrm{N} 5$	$76.4(2)$
N3-Fel-Cll	$93.7(2)$	$\mathrm{N} 6-\mathrm{Fe} 2-\mathrm{Cl} 6$	95.09 (14)
N - $\mathrm{Fel}-\mathrm{Cl} 1$	$94.2+(14)$	$\mathrm{N} 4-\mathrm{Fe} 2-\mathrm{Cl} 6$	92.70(15)
N2-Fel-Cll	167.05(15)	N5-Fe2-Cl6	167.16 (14)
$\mathrm{N} 3-\mathrm{Fel}-\mathrm{Cl} 3$	92.18 (14)	$\mathrm{N} 6-\mathrm{Fc} 2-\mathrm{Cl} 5$	16.4.50(13)
$\mathrm{Nl}-\mathrm{Fel}-\mathrm{Cl} 3$	164.52 (13)	$\mathrm{N} 4-\mathrm{Fe} 2-\mathrm{Cl} 5$	92.44 (1.4)
$\mathrm{N} 2-\mathrm{Fel}-\mathrm{Cl} 3$	89.1 (2)	$\mathrm{N} 5-\mathrm{Fe} 2-\mathrm{Cl} 5$	88.67 (1.5)
$\mathrm{Cll}-\mathrm{Fel}-\mathrm{Cl} 3$	98.99 (7)	$\mathrm{Cl} 6-\mathrm{Fe} 2-\mathrm{Cl} 5$	98.73 (6)
$\mathrm{N} 3-\mathrm{Fel}-\mathrm{Cl} 2$	162.38 (15)	$\mathrm{N} 6-\mathrm{Fe} 2-\mathrm{Cl4}$	87.02 (13)
$\mathrm{Ni}-\mathrm{Fel}-\mathrm{Cl} 2$	87.13 (14)	$\mathrm{N} 4-\mathrm{Fe} 2-\mathrm{Cl} 4$	163.42 (15)
$\mathrm{N} 2-\mathrm{Fel}-\mathrm{Cl} 2$	90.6 (2)	$\mathrm{N} 5-\mathrm{Fe} 2-\mathrm{Cl} 4$	90.74 (15)
$\mathrm{Cl1}-\mathrm{Fel}-\mathrm{Cl} 2$	98.05 (8)	$\mathrm{Cl} 6-\mathrm{Fe} 2-\mathrm{Cl} 4$	98.59 (8)
$\mathrm{Cl} 3-\mathrm{Fel}-\mathrm{Cl} 2$	98.87 (7)	$\mathrm{Cl} 5-\mathrm{Fe} 2-\mathrm{Cl} 4$	97.77 (6)

The H atoms were fixed at calculated positions riding on their parent atoms.

Data collection: CAD-4 Software (Enraf-Nonius, 1990). Cell refinement: CAD-4 Software. Data reduction: MolEN (Fair, 1990). Program(s) used to solve structure: SIR92 (Altomare et al., 1994). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: PLATON (Spek, 1990). Software used to prepare material for publication: SHELXL93.

One of the authors (KRJT) is grateful to the Department of Science and Technology, New Delhi, India, for support through the Young Scientist's Scheme (SR/SY/C-11). We thank Professor P. K. Bharadwaj, Department of Chemistry, Indian Institute of Technology, Kanpur 208 016, India, for collecting the X-ray data for the title compound.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: VJ1072). Services for accessing these data are described at the back of the journal.

References

Adams, H.. Bailey. N. A., Crane, J. D., Fenton, D. E., Latour, J.-M. \& Williams, J. M. (1990). J. Chem. Soc. Dalton Trans. pp. 1727-I735. Altomare, A., Cascarano, G.. Giacovazzo. C., Guagliardi, A., Burla, M. C., Polidori, G. \& Camalli, M. (1994). J. Appl. Cryst. 27, 435436.

Butcher. R. J. \& Addison. A. W. (1989). Inorg. Chim. Acta, 158, 211-215.
Cox, D. D. \& Que. L. (1988). J. Am. Chem. Soc. 110, 8085-8092.
Enraf-Nonius (1990). CAD-4 Softuare. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Fair, C. K. (1990). MolEN. Structure Determination System. EnrafNonius, Delft, The Netherlands.
Que, L. (1983). Coord. Chem. Rer. 50, 73-108.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Spek. L. (1990). Acta Cryst. A46, C-34.
Viswanathan, R., Palaniandavar. M., Balasubramanian, T. \& Muthiah, P. T. (1996). J. Chem. Soc. Dalton Trans. pp. 2519-2525.

Acta Cryst. (1998). C54, 743-744

(Trifluoroacetato-O,O')bis(triphenyl-phosphine- P)silver(I)

Seik Weng Ng

Institute of Postgraduate Studies and Research, University of Malaya, 50603 Kuala Lumpur, Malaysia. E-mail: hInswen@umcsd.um.edu.my
(Received 29 October 1997; accepted 6 January 1998)

Abstract

The Ag atom in the title complex, $\left[\mathrm{Ag}\left(\mathrm{C}_{2} \mathrm{~F}_{3} \mathrm{O}_{2}\right)\right.$ $\left(\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{P}\right)_{2}$], is bonded to two triphenylphosphine ligands and a chelating trifluoroacetate anion in a distorted tetrahedral geometry.

Comment

Silver(I) acetate reacts with triphenylphosphine to form dimeric bis[acetato(triphenylphosphine)silver(I)],
as well as monomeric acetatobis(triphenylphosphine)silver(I). The latter crystallizes with two independent molecules, A and B, in the unit cell. The Ag atoms in the monomeric compound show a distorted tetrahedral coordination: the acetate anion chelates in an isobidentate manner in molecule $A[\mathrm{Ag}-\mathrm{P}=2.433$ (1) and 2.448 (1) $\AA ; \mathrm{Ag}-\mathrm{O}=2.420$ (2) and $2.438(2) \AA]$, but in an anisobidentate manner in molecule $B[\mathrm{Ag}-$ $\mathrm{P}=2.426(1)$ and $2.461(1) \AA \mathrm{Ag}-\mathrm{O}=2.379$ (3) and 2.510 (3) \AA] ($\mathrm{Ng} \&$ Hamid Othman, 1997). The Ag atom in the (trifluoroacetato- O, O^{\prime}) bis(triphenyl-phosphine- P)silver(I) analog, (I), is carboxylate-chelated in a distorted tetrahedral geometry, but whereas the silver-phosphorus distances $[\mathrm{Ag}-\mathrm{P}=2.423(1)$ and 2.445 (1) Å] are similar to those in molecule A of acetatobis(triphenylphosphine)silver(I), the silver-oxygen distances [$\mathrm{Ag}-\mathrm{O}=2.526$ (3) and 2.542 (4) \AA] are significantly longer, in agreement with the observation that the trifluoroacetato ion is a weaker Lewis base than the acetato ion.

(I)

An analysis of the structural features of several acetates and trifluoroacetates has found that the $\mathrm{O}-\mathrm{C}-\mathrm{O}$ angles of trifluoroacetates exceed those of acetates (Brown, 1980); this feature is also observed for the (trifluoroacetato- O, O^{\prime}) bis(triphenyl-

Fig. 1. ORTEPII (Johnson, 1976) plot at the 50% probability level. H atoms are drawn as spheres of arbitrary radii.

